Abstract

Two-dimensional proton nuclear magnetic resonance (NMR) spectra of a synthetic peptide (p25) corresponding to the amino-terminus of the yeast mitochondrial cytochrome oxidase subunit IV precursor protein have been analyzed. Sequence-specific resonance assignments of the peptide have been made in the presence of micelles of a phospholipid analog, perdeuterated dodecylphosphocholine (DPC), with the aid of such techniques as HOHAHA, DQF-COSY, and NOESY. The interresidue nuclear Overhauser effects (NOEs) indicate that the N-terminal half of p25 (S3-F11) takes a helical structure while the C-terminal half does not take a regular secondary structure. Addition of DPC to the solution of p25 induced chemical shift changes only of the resonances from the residues in the N-terminal half, suggesting that the N-terminal half of p25 is directly involved in binding to DPC. The induced helical structure in the N-terminal half at a lipid-water interface may be important in the ability of this presequence to direct a "passenger" protein into mitochondria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.