Abstract

N-terminal acetylation (N-acetylation) is one of the most common protein modifications and plays crucial roles in viability and stress responses in animals and plants. However, very little is known about N-acetylation of viral proteins. Here, we identified the Thr residue at position 2 (Thr-2) in the βC1 protein encoded by the betasatellite of tomato yellow leaf curl China virus (TYLCCNB-βC1) as a novel N-acetylation site. Furthermore, the effects of TYLCCNB-βC1 N-acetylation on its function as a pathogenicity factor were determined via N-acetylation mutants in Nicotiana benthamiana plants. We found that N-acetylation of TYLCCNB-βC1 is critical for its self-interaction in the nucleus and viral pathogenesis, and that removal of N-acetylation of TYLCCNB-βC1 attenuated tomato yellow leaf curl China virus-induced symptoms and led to accelerated degradation of TYLCCNB-βC1 through the ubiquitin-proteasome system. Our data reveal a protective effect of N-acetylation of TYLCCNB-βC1 on its pathogenesis and demonstrate an antagonistic crosstalk between N-acetylation and ubiquitination in this geminiviral protein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.