Abstract

为了分析纯净ZnO和N元素的掺入对S掺杂ZnO的电子结构和光学性质的影响,基于密度泛函理论采用第一性原理计算方法,我们研究了各种复合体的缺陷形成能、离化能、态密度、导电率、介电函数和吸收系数。结果发现:3N-S共掺ZnO不仅能提高N受主溶解度,而且可以引起浅受主能级。这表明3N-S共掺能够得到高质量稳定p型ZnO。同时,随着N原子的增加,体系的离化能迅速降低,而体系的导电率增强。另外,通过对介电函数和吸收系数的计算,结果表明3N-S共掺ZnO在低能区有非常奇特的特性。希望不久我们的理论结果能够为实验提供理论依据。 To analyze the electronic structures and optical properties of pure-ZnO and N-S codoped ZnO, the defect formation and ionization energy, density of states, conductivity, dielectric constant and adsorption coefficient of varies complexes were calculated by the first-principles calculation methods based on Density Functional Theory (DFT). It is found that 3N-S codoping in ZnO not only enhances N acceptor solubility, but also leads to shallower acceptor energy, demonstrating that 3N-S codoping can obtain a high-quality and more stable p-type ZnO. Furthermore, as the incorporation of N atoms is increasing, the ionization energies of the complexes are sharply decreasing, and the conductivity of the system is enhanced. In addition, the calculation of the dielectric functions and adsorption spectrum shows that 3N-S codoped ZnO has interesting characteristic in the low-energy region. We expect that this theory study might be helpful for the experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.