Abstract

Electron transfer and dissociative electron attachment to 3-methyluracil (3meU) and 1-methylthymine (1meT) yielding anion formation have been investigated in atom-molecule collision and electron attachment experiments, respectively. The former has been studied in the collision energy range 14-100 eV whereas the latter in the 0-15 eV incident electron energy range. In the present studies, emphasis is given to the reaction channel resulting in the loss of the methyl group from the N-sites with the extra charge located on the pyrimidine ring. This particular reaction channel has neither been approached in the context of dissociative electron attachment nor in atom-molecule collisions yet. Quantum chemical calculations have been performed in order to provide some insight into the dissociation mechanism involved along the N-CH3 bond reaction coordinate. The calculations provide support to the threshold value derived from the electron transfer measurements, allowing for a better understanding of the role of the potassium cation as a stabilising agent in the collision complex. The present comparative study gives insight into the dynamics of the decaying transient anion and more precisely into the competition between dissociation and auto-detachment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.