Abstract

A green economical procedure for preparing N,Si co-doped graphene quantum dots (N,Si-GQDs) using waste toners and ethylene diamine was reported, which not only minimizes waste and promotes recycling but also offers an alternative method for producing N,Si-GQDs. At a pH of 8.5, hydroquinone and catechol underwent oxidation in the presence of air, resulting in the formation of diquinones, specifically p-phenyldiquinone and o-phenyldiquinone. Resorcinol, on the other hand, was converted into monoquinone. The interaction between diquinones and N,Si-GQDs caused a linear fluorescence quenching effect when catechol and hydroquinone were present. However, this effect was minimal in the case of resorcinol. Furthermore, the antioxidants glutathione (GSH) and ascorbic acid (AA) were observed to disrupt the redox equilibrium of catechol and o-phenyldiquinone, leading to the activation of fluorescence. Conversely, hydroquinone and p-phenyldiquinone, due to the highly stable and symmetrical structure of p-phenyldiquinone, did not exhibit this fluorescence activation. Based on the described “Off-On” sensor system, it was possible to visually identify dihydroxybenzene isomers and selectively quantify catechol and hydroquinone in environmental samples, as well as GSH and AA in human serum. The method detection limits were 0.93, 1.35, 2.34, and 1.37 μM for catechol, hydroquinone, GSH, and AA, respectively. In conclusion, the presented procedure offers several advantages, including environmental friendliness, cost-effectiveness, and a means of recycling waste toners. It also demonstrates the successful synthesis of N,Si-GQDs, as well as the potential for their application in the “Off-On” sensor system for the detection and quantification of various analytes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call