Abstract

In this study, a chitosan co-polymer scaffold was prepared by mixing poly(vinyl alcohol) (PVA), NO, carboxymethyl chitosan (NOCC) and polyethylene glycol (PEG) solutions to obtain desirable properties for chondrocyte cultivation. Electron beam (e-beam) radiation was used to physically cross-link these polymers at different doses (30kGy and 50kGy). The co-polymers were then lyophilized to form macroporous three-dimensional (3-D) matrix. Scaffold morphology, porosity, swelling properties, biocompatibility, expression of glycosaminoglycan (GAG) and type II collagen following the seeding of primary chondrocytes were studied up to 28 days. The results demonstrate that irradiation of e-beam at 50kGy increased scaffold porosity and pore sizes subsequently enhanced cell attachment and proliferation. Scanning electron microscopy and transmission electron microscopy revealed extensive interconnected microstructure of PVA-PEG-NOCC, demonstrated cellular activities on the scaffolds and their ability to maintain chondrocyte phenotype. In addition, the produced PVA-PEG-NOCC scaffolds showed superior swelling properties, and increased GAG and type II collagen secreted by the seeded chondrocytes. In conclusion, the results suggest that by adding NOCC and irradiation cross-linking at 50kGy, the physical and biological properties of PVA-PEG blend can be further enhanced thereby making PVA-PEG-NOCC a potential scaffold for chondrocytes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.