Abstract

Recently, multifunctional lignin-based materials are gaining more and more attention due to their great potential for low-cost and sustainability. In this work, to obtain both an excellent supercapacitor electrode and an outstanding electromagnetic wave (EMW) absorber, a series of multifunctional nitrogen-sulphur (N-S) co-doped lignin-based carbon magnetic nanoparticles (LCMNPs) had been successfully prepared through Mannich reaction at different carbonization temperature. As compared with the directly carbonized lignin carbon (LC), LCMNPs had more nano-size structure and higher specific surface area. Meanwhile, with the increase of carbonization temperature, the graphitization of the LCMNPs could also be effectively improved. Therefore, LCMNPs-800 displayed the best performance advantages. For the electric double layer capacitor (EDLC), the optimal specific capacitance of LCMNPs-800 reached 154.2 F/g, and the capacitance retention after 5000 cycles was as high as 98.14 %. When the power density was 2204.76 W/kg, the energy density achieved 33.81 Wh/kg. In addition, N-S co-doped LCMNPs also exhibited strong electromagnetic wave absorption (EMWA) ability, whose the minimum reflection loss (RL) value of LCMNPs-800 was realized −46.61 dB at 6.01 GHz with an thickness of 4.0 mm, and the effective absorption bandwidth (EAB) was up to 2.11 GHz ranging from 5.10 to 7.21 GHz, which could cover the C-band. Overall, this green and sustainable approach is a promising strategy for the preparation of high-performance multifunctional lignin-based materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.