Abstract

Zinc-air batteries (ZABs) have sparked great interest, but their wide-ranging applications are limited by sluggish cathode reactions (ORR and OER). In this work, a multifunctional 3D catalyst (FeNi alloy/porous carbon) was easily fabricated by introducing Fe3+ and Ni2+ to modulate in-situ vapor phase grown carbon nanotubes. The as-prepared catalyst FNSNC73-800 displays abundant mesoporous, massive structural defects, and multiple active sites, which greatly facilitate the transport of oxygen species and charge transfer during the reaction. Due to the excellent ORR and OER performance, FNSNC73-800 shows a narrow voltage gap (ΔE) of 0.76 V, which is superior to recent reports. Notably, the secondary zinc-air battery with this catalyst displays a high-peak power density (210 mW cm−2), while maintaining an ultra-low potential gap (0.74 V) after a long-term charge-discharge cycle of 200 h. This effort presents a facile strategy for designing economical and efficient 3D catalysts for zinc-air batteries and more energy devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.