Abstract

The most consistent neurochemical abnormality in Parkinson's disease is degeneration of dopaminergic neurons in the substantia nigra, leading to a reduction of striatal dopamine levels. The rate-limiting step in the biosynthesis of dopamine, noradrenalin, and adrenalin is catalyzed by tyrosine 3-monooxygenase (=tyrosine hydroxylase), which catalyzes the formation of L-DOPA. In earlier studies, we demonstrated that the novel synthetic sialic acid precursor N-propanoylmannosamine is a potent stimulator of axonal growth and promotes reestablishment of the perforant pathway from layer II of cortical neurons to the outer molecular layer of the dentate gyrus. Here we show that application of N-propanoylmannosamine leads to increased biosynthesis and secretion of dopamine. This increased biosynthesis of dopamine is due to decreased expression of O-linked N-acetylglucosamine on tyrosine 3-monooxygenase. Intracellular attachment of O-linked N-acetylglucosamine to serine and threonine residues hinders phosphorylation, thereby regulating the activity of the proteins concerned. We therefore propose a model in which the application of ManNProp leads to increased phosphorylation and activation of tyrosine 3-monooxygenase, which in turn leads to an increased synthesis of dopamine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.