Abstract

The sophisticatedly altered Hummer's and sol-gel procedures were applied for the synthesis of graphene oxides and porous silica monolith particles respectively. The Fischer esterification protocol was used for coupling silica monoliths with graphene oxides. A N-phenyl acrylamide-incorporated porous polymer was synthesized at the surface of composites via reversible addition fragmentation chain transfer polymerization. The composition was confirmed by Fourier transform infra-red spectroscopy, FE-SEM, X-ray diffraction, zeta potential (zeta pH), Brunauer-Emmett-Teller (BET/BJH) analysis, and EDAX analysis. The resulting polymer-bound composite efficiently removed Cr(vi) and Cr(iii) from waste water. Adsorption parameters such as contact time, pH effect, temperature, and adsorbent and adsorbate concentration were optimized for the optimal output of the composite. The kinetic and equilibrium models were applied to the adsorption of Cr(vi) and Cr(iii) at the adsorbent surface. The maximum adsorption capacity (qe) of Cr(vi) and Cr(iii) was found to be 298.507 mg g-1 and 401.874 mg g-1, respectively, using the same initial concentration of Cr(vi) and Cr(iii) [10-60 ppm]. The adsorption data of both states of the Cr-metal followed the pseudo 2nd-order kinetic model with regression values of 0.996 ∼ Cr(vi) and 0.999 ∼ Cr(iii) at ambient temperature. Similarly, the adsorption data of Cr(vi) best fit into the Langmuir adsorption isotherm (R2 = 0.972) while that of Cr(iii) followed the Freundlich model (R2 = 0.983).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.