Abstract
Most resistance training research focuses on inference from average intervention effects from observed group-level change scores (i.e., mean change of group A vs group B). However, many practitioners are more interested in training responses (i.e., causal effects of an intervention) on the individual level (i.e., causal effect of intervention A vs intervention B for individual X). To properly examine individual response variation, multiple confounding sources of variation (e.g., random sampling variability, measurement error, biological variability) must be addressed. Novel study designs where participants complete both interventions and at least one intervention twice can be leveraged to account for these sources of variation (i.e., n of 1 trials). Specifically, the appropriate statistical methods can separate variability into the signal (i.e., participant-by-training interaction) versus the noise (i.e., within-participant variance). This distinction can allow researchers to detect evidence of individual response variation. If evidence of individual response variation exists, researchers can explore predictors of the more favorable intervention, potentially improving exercise prescription. This review outlines the methodology necessary to explore individual response variation to resistance training, predict favorable interventions, and the limitations thereof.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.