Abstract
Herein, we designed and fabricated a biodegradable composite sponge which main component contained N, O-carboxymethyl chitosan (N,O-CS) and oxidized cellulose nanocrystals (TOCN) as a potential wound dressing for the prevention and treatment of postoperative adhesion. In order to improve antimicrobial properties of N,O-CS/TOCN composite sponges, natural antimicrobial agents (ε-Poly-l-Lysine,EPL) were successfully introduced and the EPL/N,O-CS/TOCN composite sponge exhibited excellent antibacterial properties and biological security. The EPL/N,O-CS/TOCN composite sponge can be degraded in vivo within 3 weeks. Finally, we analyzed the anti-adhesion performance of EPL/N,O-CS/TOCN composite sponge through a rat model of sidewall defect-cecum abrasion. These results demonstrated that EPL/N,O-CS/TOCN-treated group can effectively reduce the peritoneal adhesion formation than the commercial soluble gauze group and normal saline group, which mainly attribute to the excellent hemostatic function and tissue repair function of EPL/N,O-CS/TOCN composite sponge. It is believed that the EPL/N,O-CS/TOCN composite sponge will prove to be as a new medical device treat the internal tissue/organ repair and simultaneous prevention of postoperative adhesion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.