Abstract

Dimethyltryptamine (DMT), an endogenous ligand of sigma-1 receptors (Sig-1Rs), acts against systemic hypoxia, but whether DMT may prevent cerebral ischemic injury is unexplored. Here global forebrain ischemia was created in anesthetized rats and aggravated with the induction of spreading depolarizations (SDs) and subsequent short hypoxia before reperfusion. Drugs (DMT, the selective Sig-1R agonist PRE-084, the Sig-1R antagonist NE-100, or the serotonin receptor antagonist asenapine) were administered intravenously alone or in combination while physiological variables and local field potential from the cerebral cortex was recorded. Neuroprotection and the cellular localization of Sig-1R were evaluated with immunocytochemistry. Plasma and brain DMT content was measured by 2D-LC-HRMS/MS. The affinity of drugs for cerebral Sig-1R was evaluated with a radioligand binding assay. Both DMT and PRE-084 mitigated SDs, counteracted with NE-100. Further, DMT attenuated SD when co-administered with asenapine, compared to asenapine alone. DMT reduced the number of apoptotic and ferroptotic cells and supported astrocyte survival. The binding affinity of DMT to Sig-1R matched previously reported values. Sig-1Rs were associated with the perinuclear cytoplasm of neurons, astrocytes and microglia, and with glial processes. According to these data, DMT may be considered as adjuvant pharmacological therapy in the management of acute cerebral ischemia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.