Abstract

N,N-Dimethylaminopropylsilane H(3)Si(CH(2))(3)NMe(2) was synthesised by the reaction of (MeO)(3)Si(CH(2))(3)NMe(2) with lithium aluminium hydride. Its solid-state structure was determined by X-ray diffraction, which revealed a five-membered ring with an SiN distance of 2.712(2) A. Investigation of the structure by gas-phase electron diffraction (GED), ab initio and density functional calculations and IR spectroscopy revealed that the situation in the gas phase is more complicated, with at least four conformers present in appreciable quantities. Infrared spectra indicated a possible SiN interaction in the Si-H stretching region (2000-2200 cm(-1)), as the approach of the nitrogen atom in the five-membered ring weakens the bond to the hydrogen atom in the trans position. Simulated gas-phase IR spectra generated from ab initio calculations (MP2/TZVPP) exhibited good agreement with the experimental spectrum. A method is proposed by which the fraction of the conformer with a five-membered ring can be determined by a least-squares fit of the calculated to experimental absorption intensities. The abundance of this conformer was determined as 23.7(6) %, in good agreement with the GED value of 24(6) %. The equilibrium SiN distance predicted by theory for the gas-phase structure was highly variable, ranging from 2.73 (MP2) to 3.15 A (HF). The value obtained by GED is 2.91(4) A, which could be confirmed by a scan of the potential-energy surface at the DF-LCCSD[T] level of theory. The nature of the weak dative bond in H(3)Si(CH(2))(3)NMe(2) can be described in terms of attractive inter-electronic correlation forces (dispersion) and is also interpreted in terms of the topology of the electron density.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call