Abstract

An inexpensive and highly efficient metal-free alternative to commonly used Ru- and Ir-based catalysts was proposed. It was shown that the new 2,7-di-tert-butyl-5,10-bis(4-trifluoromethylphenyl)-5,10-dihydrophenazine outcompeted the iridium phenylpyridyl complex in photoredox activity in the alkylation of silyl enol ethers yielding aryl alkyl ketones. The reaction occurred under visible light irradiation at room temperature and was also applicable to drug derivatives (ibuprofen and naproxen). In-depth photophysical, electrochemical, and quantum chemical studies showed that the aforementioned N,N-diaryldihydrophenazine exhibited enhanced properties that were essential for the photoredox catalysis (a long-lived triplet excited state, strong reducing ability, high stability of the radical cations formed in single-electron-transfer event, and chemical inertness of the catalyst with respect to reactants). Importantly, the substituted N,N'-diaryldihydrophenazines could be obtained directly from diaryl amines; a facile, easily handled and scaled-up one-pot synthetic procedure was elaborated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call