Abstract

In the title solvate, C30H24N4O2S·CH3CN, the substituted thiophene possesses approximate Cs(m) intrinsic symmetry, with the mirror plane passing through the S atom and the mid-point of the (Ph)C—C(Ph) bond. Despite the main backbone of the mol­ecule being a long chain of conjugated bonds, it adopts a non-planar conformation due to the presence of various intra- and inter­molecular hydrogen bonds. The hydrogen bonds result in twist configurations for both the amido and amino­phenyl fragments relative to the central thio­phene ring. There are two intra­molecular Namine—H⋯O hydrogen bonds within the thio­phene-2,5-dicarboxamide mol­ecule that form seven-membered rings. In the crystal, the thio­phene-2,5-dicarboxamide mol­ecules form inversion dimers by four amide–amine N—H⋯N hydrogen bonds. The dimers are further linked into layers propagating in (100) both directly (via Namine—H⋯O hydrogen bonds) and through the acetonitrile solvate mol­ecules (via amine–cyano N—H⋯N and CMe—H⋯O inter­actions).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.