Abstract

N-methyl-D-aspartic acid (NMDA) receptors play subunit-specific role in central neuronal development. However, insights into the pharmacological modulation of NMDA receptors were mainly lack of subunit and synaptic selectivity. The purpose of the present study was to develop a novel strategy to rapidly recognize NMDA subunit 2A (NMDA-2A) ligands from natural products and provide subunit-selective drug candidates for Alzheimer's disease (AD). The recombinant NMDA-2A containing a tag of epidermal growth factor receptor (EGFR) was expressed in Escherichia coli cells and immobilized on ibrutinib-modified microspheres based on the specific reaction between EGFR and its inhibitor ibrutinib. A novel affinity stationary phase was synthesized to screen NMDA-2A ligands from Gardenia jasminoides Ellis. The immobilized receptor column exhibited excellent receptor selectivity and ligand-binding activity. Crocetin was screened by using this method. In a cellular model of AD, the protein level of NMDA-2A was significantly decreased compared with the control group, while treatment with crocetin significantly increased NMDA-2A level in a concentration-dependent manner, confirming that crocetin could bind to NMDA-2A in vitro. In the present study, we developed a reliable method for the rapid identification of NMDA-2A ligands from natural products, which may be used as a platform for new drug discovery to generate high-quality drug candidates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.