Abstract
Although the ciliate Tetrahymena is a good model for the study of chemotaxis, its profound motility makes it difficult to monitor intracellular calcium (Ca(2+)) changes induced by chemotactic stimuli. In this study, we report a microfluidic-based chemotaxis system generating directional chemotactic gradients under highly viscous conditions, suppressing T. pyriformis motility, and allowing for the stable confocal imaging of changes in intracellular Ca(2+) in the ciliate. Once the viscous condition was achieved, directional chemical gradients were formed inside the center chamber via the release of N-methyl-d-aspartate (NMDA), a known chemoattractant, from the surrounding chemical reservoirs into the center chamber. As a result, intracellular Ca(2+) in the ciliate increased up to three-fold, and its distribution was skewed in the direction of NMDA stimulation. However, the Ca(2+) in ciliates pretreated with phospholipase C (PLC) or phosphatidylinositol-3-kinase (PI3K) blockers did not increase even after stimulation. Additionally, the PI3K blocker induced the secretion of granules, the size of which was dependent on the concentration of the blocker. Collectively, the results indicate that both PLC and PI3K perform pivotal roles in controlling the levels of intracellular Ca(2+) in T. pyriformis during chemotaxis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.