Abstract
The effects of N-methyl-D-aspartate (NMDA) on opioid receptor-mediated G protein activation were explored in neuroblastoma X glioma hybrid (NG108-15) cells. Treatment of the cells with NMDA resulted in a remarkable attenuation of [35S]guanosine-5'-O-(3-thio)triphosphate binding stimulated by [D-Pen2,D-Pen5]-enkephalin (DPDPE), a delta-opioid receptor agonist. The effects of NMDA were dose and time dependent with an IC50 value of 5 nM and could be blocked by NMDA receptor antagonists. After NMDA treatment, the DPDPE dose-response curve shifted to the right (EC50 value increased approximately 7-fold, from 6 to 40 nM), and the maximal response induced by DPDPE was reduced by approximately 60%. The effects of NMDA were reversible, and the DPDPE response could recover within 60 min. The functional responses of delta-, mu-, and kappa-opioid receptors in primarily cultured neurons also were attenuated significantly by NMDA treatment. The inhibitory effects of NMDA on opioid receptor-mediated G protein activation could be blocked by coadministration of the protein kinase C (PKC) inhibitors or by elimination of the extracellular Ca2+. Correspondingly, NMDA treatment of NG108 cells significantly elevated cellular PKC activity and stimulated Gialpha2 phosphorylation. Transient transfection into NG108-15 cells of the wild-type Gialpha2 and a mutated Gialpha2 (Ser144Ala) resulted in a 2-fold increase in DPDPE-stimulated G protein activation. The DPDPE responses were greatly inhibited by NMDA treatment in the wild-type Gialpha2-transfected cells but much less affected in the mutant Gialpha2-transfected cells. In summary, NMDA attenuates opioid receptor/G protein coupling, and this process requires activation of PKC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.