Abstract

The effects of ionophoretically applied N-methyl-DL-aspartate (NMDA) and aspartate on identified pyramidal neurons in rat piriform cortex were examined in isolated, submerged, and perfused brain slices. NMDA was more potent than aspartate in eliciting neuronal discharge. Perfusion of the acidic amino acid antagonists, DL-2-amino-5-phosphonovalerate (APV), 10(-6) or 10(-5) M, DL-2-amino-7-phosphonoheptanoate (APH), 10(-5) M, and gamma-D-glutamylglycine (gamma DGG), 10(-5) M, selectively blocked the response to NMDA without effect on the response to aspartate. At higher concentrations which blocked responses to both NMDA and aspartate, gamma DGG blocked kainate responses and depressed glutamate and quisqualate responses. These results suggest that in piriform neurons NMDA and aspartate act at distinct receptor sites, not a common receptor site, and that both of these sites are distinct from those that mediate responses to glutamate, quisqualate, and kainate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call