Abstract

Injection of small volumes of N-methyl-D-aspartate (NMDA) or Sin-1 molsidomine (a nitric oxide releasing agent) onto the dendrites of granule cells in the hippocampal dentate gyrus leads to changes in the level of expression of a number of genes. There is a fall in prodynorphin mRNA levels with a corresponding increase in proenkephalin mRNA levels. Similar changes in opioid gene expression occur following the induction of long-term potentiation (LTP). We report here that at short time periods (1-6 h) after injections of NMDA or sin-1 molsidomine, there is an increase in the levels of the mRNA encoding the alpha subunit of Ca2+/calmodulin-dependent protein kinase II (CaMKII alpha), consistent with a report of elevated CaMKII alpha mRNA in postsynaptic neurons in the CA1 region of the hippocampus following LTP induction [54]. However, we also report that 24 h after injection of NMDA or sin-1, there is a dramatic decrease in CaMKII alpha mRNA levels in the vicinity of the injection. This effect is specific for CaMKII alpha mRNA, in that many other mRNA species are not affected, and occurs in the dendritic population of CaMKII alpha mRNA as well as in the pool of mRNA in the granule cell bodies. The effect is blocked by an inhibitor of cGMP-dependent protein kinase. The biphasic regulation of CaMKII alpha mRNA may be of considerable functional importance for the long-term response of granule cells to local stimulation of NMDA receptors or NO release.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call