Abstract

We examined whether pharmacological inhibition of glycogenolysis by N-methyl-1-deoxynojirimycin (MOR-14), a new compound which reduces the glycogenolytic rate by inhibiting the alpha-1,6-glucosidase activity of the glycogen-debranching enzyme, can protect the heart against postischemic left ventricular dysfunction. The hearts of male Sprague-Dawley rats were excised, and perfused on a Langendorff apparatus with Krebs-Henseleit solution with a gas mixture of 95% O2 and 5% CO2. The hearts were paced at 320 beats/min except during the ischemia. Left ventricular developed pressure (LVDP, mmHg), +/-dP/dt (mmHg/s), and coronary flow (ml/min) were continuously monitored. All hearts were perfused for a total of 120 min including a 30-min preischemic period followed by a 30-min episode of global ischemia and 60 min reperfusion. with or without 0.5 or 2 mM of MOR-14 during the 30-min preischemic period or the first 30 min of reperfusion. In another series of experiments, the myocardial content of glycogen and lactate was measured during the 30-min episode of ischemia in groups treated with and without 2mM of MOR-14. Preischemic but not postischemic treatment with MOR-14 significantly improved LVDP and +/-dP/dt without altering coronary flow during reperfusion in a dose-dependent manner. MOR-14 significantly preserved the glycogen content and significantly attenuated the lactate accumulation during the 30-min episode of ischemia. Preischemic treatment with MOR-14 is protective against postischemic left ventricular dysfunction through the inhibition of glycogenolysis in the isolated rat heart.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call