Abstract

The spin-lattice relaxation times of the various nuclei in methyl iodide, methyl iodide-d 3, and carbon-13 methyl iodide (13C, 1H, 2D) were measured between 210 and 350 K. The separation of the proton-proton intermolecular relaxation was accomplished by a dilution study in methyl iodide-d 3; the resulting intermolecular contribution agreed well with the existing theories for this mechanism. It was found that the spin-rotation interaction contributed significantly to the intramolecular relaxation of both the protons and the carbon-13. For both nuclei the separation of the spin-rotation interaction from the intramolecular dipole-dipole interaction was accomplished without making any assumptions about the temperature dependence of the spin-rotation relaxation time. The resulting spin-rotation relaxation times for both carbon-13 and protons offer evidence that the large spin-rotation effects are due to the methyl group reorientation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.