Abstract

The nature and role of glycosylation in AT1 angiotensin receptor (AT1-R) function were investigated by expressing glycosylation-deficient influenza hemagglutinin (HA) epitope-tagged rat AT1a-Rs (HA-AT1a-Rs) in COS-7 cells. All three asparagine residues (Asn4, Asn176, Asn188) contained within consensus sites for N-linked glycosylation could be glycosylated in Cos-7 cells and appeared to be glycosylated on the endogenous AT1-R in bovine adrenal glomerulosa cells. Heterogeneity of glycosylation at each site accounted for the broad migration pattern of the AT1-R in SDS-PAGE. Mutation at each glycosylation site, either alone or in combination, had little effect on ligand binding parameters (although the N4K mutant had higher affinity) or signaling activity. However, an increasing number of mutated glycosylation sites was associated with decreasing cell surface receptor expression, which was minimal for the unglycosylated N4K/N176Q/N188Q receptor. Decreased surface expression of mutant HA-AT1a-Rs was correlated with decreased total cell receptor content as revealed by immunoblotting with an anti-HA antibody. These findings suggest that glycosylation enhances receptor stability, possibly by protecting nascent receptors from proteolytic degradation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.