Abstract

Aryl and heterocyclic amines are of particular interest because of their carcinogenicity. The N-hydroxy derivatives are formed by oxidation, usually by the cytochrome P450 (P450) enzymes and most often by P450 family 1. The mechanism of oxidation appears to resemble that of other P450 reactions. The N-hydroxy products can be conjugated to yield esters, which are unstable and form nitrenium ions. Reaction with DNA is most common at the N2 atom and particularly at the C8 atom of guanine. A mechanism involving initial formation of an N7-guanyl adduct can be utilized in explaining the C8-guanyl adducts plus several other side reactions. The high mutagenicity of N-hydroxy heterocyclic amines in bacterial systems has provided a useful tool for the development of models useful for screening and chemoprevention and for the generation of P450 enzymes with altered properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.