Abstract
The Schiff base H2L1 [N,N'-ethylenebis(3-methoxysalicylaldimine)] or H2L2 [N,N'-ethylenebis(3-ethoxysalicylaldimine)] was reacted with MCl2·xH2O and SnCl4·5H2O to afford the supramolecular heterobimetallic systems (H2ED)2+·2[ML]·[SnCl6]2- [M = Cu, L = L1 (1), L = L2 (2); M = Ni, L = L1 (3), L = L2 (4); ED = 1,2-ethylenediamine], whose structures were established by single crystal X-ray analyses. Each structure includes different entities, viz. a mononuclear [CuL]/[NiL] neutral complex (coformer), a hexachlorostannate dianion [SnCl6]2-, a 1,2-ethylenediammonium dication (H2ED2+) and, only in 2 and 4, a methanol molecule. Based on the work of Grothe et al. (Cryst. Growth Des., 2016, 16, 3237-3243), compounds 1 and 3 are cocrystal salts, 2 and 4 are cocrystal salt solvates. The ionic pairs (H2ED)2+·[SnCl6]2- in 1-4 are encapsulated by the Cu- or Ni-complexes, and stabilized by N-HO and one N-HCl bond interactions leading to infinite 1D chains. The antimicrobial studies of 1-4 against yeasts (C. albicans and S. cerevisiae) and Gram-positive (S. aureus and E. faecalis) and -negative bacteria (P. aeruginosa and E. coli) indicate that the Ni2Sn systems (3 and 4) are more active than the analogous Cu2Sn ones (1 and 2).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.