Abstract

Ultrafine gold nanoclusters (Au-NCs) are susceptible to migrate and aggregate, even in the porosity of many crystalline solids. N-heterocyclic carbenes (NHCs) are a class of structurally diverse ligands for the stabilization of Au-NCs in homogeneous chemistry, showing catalytic reactivity in CO2 activation. Herein, for the first time, we demonstrate a heterogeneous nucleation approach to stabilize ultrasmall and highly dispersed gold nanoclusters in an NHC-functionalized porous matrix. The sizes of gold nanoclusters are tunable from 1.3 nm to 1.8 nm based on the interpenetration of the metal-organic framework (MOF) topology. Control experiments using amine or imidazolium-functionalized MOFs afforded the aggregation of Au species. The resultant Au-NC@MOF composite exhibits a steady and excellent activity in photocatalytic CO2 reduction, superior to control mixtures without NHC-ligand stabilization. Mechanistic studies reveal the synergistic catalytic effect of MOFs and Au-NCs through the MOF-NHC-Au covalent-bonding bridges.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call