Abstract

The amide-functionalized imidazolium salts [BocNHCH2CH2ImR]X (R = Me, X = I, 1a; R = benzyl, X = Br, 1b; R = trityl, X = Cl, 1c) bearing increasingly bulky N-alkyl substituents were prepared in high yields by direct alkylation of the (2-imidazol-1-yl-ethyl)carbamic acid tert-butyl ester; 1c is a crystalline solid also characterized by X-ray diffraction. These salts are precursors for the synthesis of rhodium(I) complexes [Rh(NBD)X(NHC)] (NHC = 1-(2-NHBoc-ethyl)-3-R-imidazolin-2-ylidene; X = Cl, R = Me (3a), R = benzyl (3b), R = trityl (3c); X = I, R = Me (4a)). All the complexes display restricted rotation about the metal–carbene bond; however, while the rotation barriers calculated for 3a,b and 4a matched the experimental values, unexpectedly this was not true in the case of 3c, where the experimental value was equal to that obtained for compound 3b (58.6 kJ mol–1) and much smaller with respect to the calculated one (100.0 kJ mol–1). The catalytic activity of the neutral rhodium(I) complexes 3a–c in the ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.