Abstract
A method for the reduction of a manganese nitride to ammonia is reported, where light-driven proton-coupled electron transfer enables the formation of weak N-H bonds. Photoreduction of (saltBu)MnVN to ammonia and a Mn(II) complex has been accomplished using 9,10-dihydroacridine and a combination of an appropriately matched photoredox catalyst and weak Brønsted acid. Acid-reductant pairs with effective bond dissociation free energies between 35 and 46 kcal/mol exhibited high efficiencies. This light-driven method may provide a blueprint for new approaches to catalytic homogeneous ammonia synthesis under ambient conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.