Abstract

Staphylococcal nuclease domain-containing protein 1 (SND1) is an evolutionarily conserved multidomain protein, which has gained attention recently due to its positive regulation in several cancer progression and metastatic spread. However, the specific contribution of SND1 glycosylation in glioma remains uncertain. In the current study, we confirmed that SND1 was highly expressed in human glioma. Using site-directed mutagenesis, we created four predicted N-glycosylation site mutants for SND1 and provided the first evidence that SND1 undergoes N-glycosylation on its Asn50, Asn168, Asn283, and Asn416 residues in human glioma U87 cells. In addition, we found that removing the N-glycans on the Asn50 site destabilized SND1 and led to its endoplasmic reticulum-associated degradation. Furthermore, destabilized SND1 inhibits the glioma cell proliferation and metastasis. Collectively, our results reveal that N-glycosylation at Asn50 is essential for SND1 folding and trafficking, thus essential for the glioma process, providing new insights for SND1 as a potential disease biomarker for glioma.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call