Abstract

Plant receptor kinases (RKs) are critical for transmembrane signalling involved in various biological processes including plant immunity. MALE DISCOVERER1-INTERACTING RECEPTOR-LIKE KINASE 2 (MIK2) is a unique RK that recognizes a family of immunomodulatory peptides called SERINE-RICH ENDOGENOUS PEPTIDEs (SCOOPs) and activates pattern-triggered immunity responses. However, the precise mechanisms underlying SCOOP recognition and activation of MIK2 remain poorly understood. Here we present the cryogenic electron microscopy structure of a ternary complex consisting of the extracellular leucine-rich repeat (LRR) of MIK2 (MIK2LRR), SCOOP12 and the extracellular LRR of the co-receptor BAK1 (BAK1LRR) at a resolution of 3.34 Å. The structure reveals that a DNHH motif in MIK2LRR plays a critical role in specifically recognizing the highly conserved SxS motif of SCOOP12. Furthermore, the structure demonstrates that N-glycans at MIK2LRRAsn410 directly interact with the N-terminal capping region of BAK1LRR. Mutation of the glycosylation site, MIK2LRRN410D, completely abolishes the SCOOP12-independent interaction between MIK2LRR and BAK1LRR and substantially impairs the assembly of the MIK2LRR-SCOOP12-BAK1LRR complex. Supporting the biological relevance of N410-glycosylation, MIK2N410D substantially compromises SCOOP12-triggered immune responses in plants. Collectively, these findings elucidate the mechanism underlying the loose specificity of SCOOP recognition by MIK2 and reveal an unprecedented mechanism by which N-glycosylation modification of LRR-RK promotes receptor activation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.