Abstract

Positive selection of diverse yet self-tolerant thymocytes is vital to immunity and requires a limited degree of T cell antigen receptor (TCR) signaling in response to self peptide-major histocompatibility complexes (self peptide-MHCs). Affinity of newly generated TCR for peptide-MHC primarily sets the boundaries for positive selection. We report that N-glycan branching of TCR and the CD4 and CD8 coreceptors separately altered the upper and lower affinity boundaries from which interactions between peptide-MHC and TCR positively select T cells. During thymocyte development, N-glycan branching varied approximately 15-fold. N-glycan branching was required for positive selection and decoupled Lck signaling from TCR-driven Ca(2+) flux to simultaneously promote low-affinity peptide-MHC responses while inhibiting high-affinity ones. Therefore, N-glycan branching imposes a sliding scale on interactions between peptide-MHC and TCR that bidirectionally expands the affinity range for positive selection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.