Abstract

Congenital disorders of glycosylation (CDG) are a group of rare inherited metabolic disorders caused by a defect in the process of protein glycosylation. In this work, we present a comprehensive glycoprofile analysis of a male patient with a novel missense variant in the SLC35A2 gene, coding a galactose transporter that translocates UDP-galactose from the cytosol to the lumen of the endoplasmic reticulum and Golgi apparatus. Isoelectric focusing of serum transferrin, which resulted in a CDG type II pattern, was followed by structural analysis of transferrin and serum N-glycans, as well as the analysis of apolipoprotein CIII O-glycans by mass spectrometry. An abnormal serum N-glycoprofile with significantly increased levels of agalactosylated (Hex3HexNAc4-5 and Hex3HexNAc5Fuc1) and monogalactosylated (Hex4HexNAc4 ± NeuAc1) N-glycans was observed. Additionally, whole exome sequencing and Sanger sequencing revealed de novo hemizygous c.461T > C (p.Leu154Pro) mutation in the SLC35A2 gene. Based on the combination of biochemical, analytical, and genomic approaches, the set of distinctive N-glycan biomarkers was characterized. Potentially, the set of identified aberrant N-glycans can be specific for other variants causing SLC35A2-CDG and can distinguish this disorder from the other CDGs or other defects in the galactose metabolism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.