Abstract

A novel nonviral gene delivery vector composed of a high-mannose N-glycan conjugated to a polyacridine peptide was prepared. The glycopeptide was designed to bind to plasmid DNA by a combination of polyintercalation and ionic binding, and to the DC-SIGN (dendritic cell-specific intracellular adhesion molecule-3 grabbing nonintegrin) receptor expressed on CHO cells by recognition of the high-mannose N-glycan. The glycopeptide conjugate was prepared by purification of a high-mannose N-glycan from affinity fractionated soybean agglutinin (SBA). The SBA was proteolyzed to release the N-glycan which was then modified on its N-terminus with Tyr and a propionate maleimide. A DNA binding polyacridine peptide, Cys-(Acr-Lys)(4), was prepared by solid-phase peptide synthesis using Fmoc-Lys(Acr), then conjugated to the maleimide on the N-glycan to produce a glycopeptide. The glycopeptide bound to DNA with high affinity as determined by fluorophore displacement assay and DNA band shift on agarose gel. When bound to Cy5 labeled DNA, the glycopeptide mediated specific uptake in DC-SIGN CHO (+) cells as determined by FACS analysis. In vitro gene transfer studies established that the glycopeptide increased the specificity of gene transfer in DC-SIGN CHO (+) cells 100-fold relative to CHO (-) cells. These studies suggest that a high-mannose N-glycan conjugated to a polyacridine peptide may also facilitate receptor mediated gene delivery in dendritic cells and thereby find utility in the delivery of DNA vaccines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.