Abstract

Galectins have been implicated in inhibiting BCR signaling in mature B cells but promoting pre-BCR signaling during early development. Galectins bind to branched N-glycans attached to cell surface glycoproteins to control the distribution, clustering, endocytosis, and signaling of surface glycoproteins. During T cell development, N-glycan branching is required for positive selection of thymocytes, inhibiting both death by neglect and negative selection via enhanced surface retention of the CD4/CD8 coreceptors and limiting TCR clustering/signaling, respectively. The role of N-glycan branching in B cell development is unknown. In this study, we report that N-glycan branching is absolutely required for development of mature B cells in mice. Elimination of branched N-glycans in developing B cells via targeted deletion of N-acetylglucosaminyl transferase I (Mgat1) markedly reduced cellularity in the bone marrow and/or spleen and inhibited maturation of pre-, immature, and transitional stage 2 B cells. Branching deficiency markedly reduced surface expression of the pre-BCR/BCR coreceptor CD19 and promoted spontaneous death of pre-B cells and immature B cells in vitro. Death was rescued by low-dose pre-BCR/BCR stimulation but exacerbated by high-dose pre-BCR/BCR stimulation as well as antiapoptotic BclxL overexpression in pre-B cells. Branching deficiency also enhanced Nur77 induction, a marker of negative selection. Together, these data suggest that, as in T cells, N-glycan branching promotes positive selection of B cells by augmenting pre-BCR/BCR signaling via CD19 surface retention, whereas limiting negative selection from excessive BCR engagement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call