Abstract
Mean-field methods such as Hartree-Fock (HF) and Hartree-Fock-Bogoliubov (HFB) constitute the building blocks upon which more elaborate many-body theories are based. The HF and HFB wave functions are built out of independent quasiparticles resulting from a unitary linear canonical transformation of the elementary fermion operators. Here, we discuss the possibility of allowing the HF transformation to become nonunitary. The properties of such HF vacua are discussed, as well as the evaluation of matrix elements among such states. We use a simple ansatz to demonstrate that a nonunitary transformation brings additional flexibility that can be exploited in variational approximations to many-fermion wave functions. The action of projection operators on nonunitary-based HF states is also discussed and applied, in a variation-after-projection approach, to the one-dimensional Hubbard model with periodic boundary conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.