Abstract

Using single-electron capacitance spectroscopy, we map the magnetic field dependence of the ground state energies of a single quantum dot containing from 0 to 50 electrons. The experimental spectra reproduce many features of a noninteracting electron model with an added fixed charging energy. However, in detailed observations deviations are apparent: Exchange induces a two-electron singlet-triplet transition, self-consistency of the confinement potential causes the dot to assume a quasi-two-dimensional character, and features develop which are suggestive of the fractional quantum Hall effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call