Abstract

One of the main challenges faced by microbial fuel cells (MFCs) generating voltage is how to facilitate the oxygen reduction reaction (ORR) process using a specifically designed air cathode, especially by optimizing a three-phase catalytic interface and enhanced O2 diffusion on it. Herein, a three-dimensional porous N-doped graphene aerogel (NGA) is polymerized onto a steel mesh (SM) to construct a simple structure of an air cathode (NGA-x/SM) via hydrothermal synthesis and subsequent freeze-drying treatment; more specifically, NGA was simultaneously used as an efficient ORR catalyst layer and breathable gas diffusion layer to improve the performance of MFCs. In this system, the NGA-5/SM (with a precursor concentration of x = 5.0 mg mL-1) makes itself a perfect candidate to be used as an air cathode. Characterization parameters reveal that sub-micrometer micropores, defective multilayer structures, and the highest proportion of pyridinic-N (48.1%) exist in NGA-5/SM. Furthermore, electrochemical measurements demonstrate that it has an oxygen reduction peak potential of 0.63 V, a Tafel slope of 187 mV dec-1, and closest 4e- transfer pathway (n = 3.2-3.5). These data prove that a three-phase boundary can naturally form in NGA-5/SM, where the ORR occurs. More importantly, this work provides a proof of concept that a Pt-free air cathode could be prepared with high-efficiency NGA by a two-step preparation method to achieve a MFC maximum power density of 1593 mW m-2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.