Abstract

The peroxide gel route is employed to synthesize N-doped TiO2 nanoparticles (NP) at low temperature using titanium tetraisopropoxide, ethylmethylamine, and hydrogen peroxide as precursors. Structural studies show anatase phase in the undoped titania NPs as well as at 5 at. % N-doped titania NPs, although with a degree of matrix disorder in the latter case. The annealing of N-doped titania NPs at different temperatures shows that above 400 °C nitrogen escapes the O−Ti−O matrix and at 500 °C the sample becomes crystalline. Transmission electron microscopy reveals that the particle size is in the range of 20−30 nm for the undoped TiO2 but only 5−10 nm for N-doped TiO2. At higher nitrogen concentration (10 at. %) bubble-like agglomerates form. FTIR and photoluminescence quenching also confirm the incorporation of nitrogen in anatase TiO2. Optical properties reveal an extended tailing of the absorption edge toward the visible region upon nitrogen doping. X-ray photoelectron spectroscopy is used to examine the electronic state of doped nitrogen and the associated possible electronic modification of the TiO2 matrix. Under visible light irradiation the undoped TiO2 NPs do not show any significant photocatalytic activity, as expected; however, the 5 at. % N-doped TiO2 NPs show excellent activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.