Abstract

A novel hierarchical porous carbon derived from poly(p-phenylenediamine) incorporated with reduced graphene oxide (rGO) is prepared for CO2 capture and supercapacitors. In this synthesis, chemically in-situ oxidative polymerization and KOH chemical activation are employed with the controllable introduction of GO (GO/Polyphenylenediamine = 0–2 wt%). The obtained carbon material (APG-1%) with high surface area (860.4 m2 g−1) and rich N content (7.91 wt%) exhibits excellent CO2 capture ability (4.65 mmol g−1 at 298 K, 5 bar) and good electrochemical performance as a supercapacitor electrode with 158.5 F g−1 in 6 M KOH at a current density of 1 A g−1. Even at a high current density of 10 A g−1, a capacity of 115.2 F g−1 is still maintained. The rational addition of rGO provides an effective strategy of simultaneous improvement of CO2 adsorption and capacitive performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call