Abstract

AbstractHighly porous N‐doped carbons have been successfully prepared by using KOH as activating agent and polypyrrole (PPy) as carbon precursor. These materials were investigated as sorbents for CO2 capture. The activation process was carried out under severe (KOH/PPy = 4) or mild (KOH/PPy = 2) activation conditions at different temperatures in the 600–800 °C range. Mildly activated carbons have two important characteristics: i) they contain a large number of nitrogen functional groups (up to 10.1 wt% N) identified as pyridonic‐N with a small proportion of pyridinic‐N groups, and ii) they exhibit, in relation to the carbons prepared with KOH/PPy = 4, narrower micropore sizes. The combination of both of these properties explains the large CO2 adsorption capacities of mildly activated carbon. In particular, a very high CO2 adsorption uptake of 6.2 mmol·g−1 (0 °C) was achieved for porous carbons prepared with KOH/PPy = 2 and 600 °C (1700 m2·g−1, pore size ≈ 1 nm and 10.1 wt% N). Furthermore, we observed that these porous carbons exhibit high CO2 adsorption rates, a good selectivity for CO2‐N2 separation and it can be easily regenerated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.