Abstract

Herein, we report a confined pyrolysis strategy to prepare mesoporous carbon nanospheres by which surface area of carbon spheres is increased, pore size is enlarged and effective N-doping is achieved. In this method, the mesoporous polymer sphere as carbon precursor and 2-methylimidazole as nitrogen precursor are encapsulated in a compact silica shell which provides a confined nano-space for the pyrolysis treatment. The in situ generated gases from mesoporous polymer sphere and 2-methylimidazole under pyrolysis diffuse into the pores of mesoporous polymer sphere in the confined compact silica shell, resulting in increased surface area, larger pore size and N-doping due to self-activation effect. As electrodes in supercapacitor, the N-doped mesoporous carbon nanospheres exhibit a significantly enhanced specific capacitance of 326 F g−1 at 0.5 A g−1, which is 2 times higher than that of mesoporous carbon spheres under unconfined pyrolysis condition, exhibiting its potential for electrode materials with high performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.