Abstract
Heterogenization of homogeneous catalysis through supported single-atom catalysts (SACs) provided a feasible solution to recycling catalysts while keeping its efficiency in chemical synthesis. In this work, Cu SACs anchored on N-doped graphene (Cu SACs/NG) were prepared and first used for C-N coupling reactions. During the preparation, Cu-N-C structures, including Cu-N4 moieties, were formed in a one-step pyrolysis method. As-prepared Cu SACs/NG exhibited excellent catalytic activity toward C-N coupling reactions with a broad scope of substrates and showed outstanding performance of recycling. Compared with Cu nanoparticles (Cu NPs/NG), the advantages of single-atom catalysts were validated via experimental and theoretical calculations. The enhanced performances were attributed to increasing the number of active sites and increasing the intrinsic activity of each active site. This work provides an alternative synthetic strategy for fabricating atomically dispersed SACs and represents a significant advance for coupling reactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.