Abstract

AbstractLithium metal is the most promising anode material for high‐energy‐density batteries due to its high specific capacity of 3860 mAh g−1 and low reduction potential of −3.04 V versus standard hydrogen electrode. However, huge volume change, safety concerns, and low efficiency impede the practical applications of Li metal anodes. Herein, it is shown that the nitrogen‐doped graphene modified 3D porous Cu (3DCu@NG) current collector can mitigate the above problems. The N‐doped graphene, coating on the surface of 3D current collector, not only contributes to a uniform Li+ flux, but also leads to a scattered distribution of electrons throughout the surface, finally contributing to a uniform Li deposition and the improved electrochemical performance. In addition, the continuously porous structure of 3DCu@NG provides a space for the metallic Li deposition and could effectually accommodate the volume expansion during cycling. As a result, the Li‐3DCu@NG anode exhibits a high areal capacity of 4 mAh cm−2, a high Li utilization of ≈98%, and an ultralow voltage hysteresis of ≈19 mV. The multifunctional N‐doped graphene modified 3D porous current collector promisingly provides a strategy for safe and high‐energy lithium metal anodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.