Abstract

A columnar N-doped graphene aerogel (NGA) was successfully fabricated by one-step hydrothermal synthesis using L-hydroxyproline as reductant, N-doping, and swelling agent, and it was used as the cathode with internal aeration mode for the electro-Fenton degradation of p-nitrophenol. Owing to the stable solid-liquid-gas three-phase interface, more active defects, and modulated nitrogen dopants, the NGA cathode exhibited enhanced electrocatalytic activity. H2O2 could be continuously electro-generated via a two-electron oxygen reduction, and the yield of H2O2 was 153.3mg·L-1·h-1 with the low electric energy consumption of 15.3 kWh kg-1. Simultaneously, the NGA cathode had better charge transfer capability with N-doping, which was conducive to the conversion of Fe3+/Fe2+. Under the optimal condition, nearly 100% removal of p-nitrophenol and 84% removal of TOC were obtained within 60 and 120min, respectively. The NGA cathode also presented good stability and versatile applicability in different water matrices. Therefore, the NGA is a cost-effective cathode material in electro-Fenton system with adequate activity and reuse stabilization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.