Abstract
The sluggish surface reaction kinetics and slow carrier migration dynamics are the main limiting factors to implement the practical application of hydrogen evolution reaction (HER). Herein, CoP/N-CNT/CC electrocatalyst was prepared by cladding CoP nanosheets on the 3D nanostructured current collector (N-CNT/CC), which was fabricated by in-situ growing N-doped carbon nanotubes on carbon cloth (CC) substrate. The experimental results indicate that, for CoP/N-CNT/CC, CoP acts as the dominant active center to participate in HER directly, while N-CNTs are regarded as the electron transport promoter. Compared with CoP/CC that does not contain N-CNTs, CoP/N-CNT/CC possesses the lower charge-transfer resistance, revealing that N-CNT greatly accelerates electron transport, resulting in accelerating the dynamic process of carrier migration. Besides, the introduction of N-CNTs on CC can increase electrochemical active surface area and facilitate to exposure of more CoP active sites. DFT calculation demonstrates that the adsorption of H* over CoP/N-CNT/CC can be accelerated due to the weaker hydrogen adsorption energy. It proves that the HER kinetics can be accelerated when introducing the N-CNT electron transport promoter bridging CoP and CC. Therefore, CoP/N-CNT/CC electrocatalyst exhibits a η10 value of 41 mV under alkaline media, which is much better than CoP/CC (100 mV), and it shows a comparable HER activity with Pt/C at high current density.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.