Abstract

Developing highly porous and conductive carbon electrodes is crucial for high-performance electrochemical double-layer capacitors. We provide a method for preparing supercapacitor electrode materials using zeolitic imidazolate framework-8 (ZIF-8)-coated wood fibers. The material has high nitrogen (N)-doping content and a specific surface area of 593.52 m2 g-1. When used as a supercapacitor electrode, the composite exhibits a high specific capacitance of 270.74 F g-1, with an excellent capacitance retention rate of 98.4% after 10,000 cycles. The symmetrical supercapacitors (SSCs) with two carbon fiber electrodes (CWFZ2) showed a high power density of 2272.73 W kg-1 (at an energy density of 2.46 W h kg-1) and an energy density of 4.15 Wh kg-1 (at a power density of 113.64 W kg-1). Moreover, the SSCs maintained 81.21% of the initial capacitance after 10,000 cycles at a current density of 10 A g-1, which proves that the SSCs have good cycle stability. The excellent capacitance performance is primarily attributed to the high conductivity and N source provided by the zeolite imidazole framework. Because of this carbon material's unique structural features and N-doping, our obtained CWFZ2 electrode material could be a candidate for high-performance supercapacitor electrode materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call