Abstract

AbstractIt is a serious challenge to develop photoanodes with fast charge separation efficiency and surface reaction kinetics. Herein, the N doped carbon dot modified WO3 nanoflake (NCDs/WO3) is constructed by impregnation method. The resulting NCDs/WO3 exhibits an excellent photocurrent density of 1.42 mA cm−2 (1.0 V vs saturated calomel electrode, SCE) in 1 m H2SO4 solution under AM 1.5 G irradiation, which is 2.25 times higher than that of the pristine WO3. In addition, the onset potential of NCDs/WO3 photoanode represents a cathodic shift of 70 mV, indicating the charge separation and transfer process are both promoted. These results demonstrate N doped CD modified WO3 can further enhance the conductivity and electrochemical activity surface area, which contributes to the higher photoelectrochemical (PEC) performance. This work provides an efficient strategy for the development of doping carbon material with heteroatoms to increase the charge transfer and charge separation efficiency in PEC water oxidation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.