Abstract

Inspired by natural photosynthesis, the design of novel Z-scheme photocatalytic systems holds great promise for improving photocatalytic hydrogen production performance. Here, we constructed a Z-scheme heterojunction to effectively improve the charge separation of TiO2/ZnIn2S4, with the N-doped C layer acting as an electron bridge. The T@NC-A/ZIS-72 heterojunctions demonstrated hydrogen production activity approximately 12.1 and 97.9 times higher than those of ZnIn2S4 and TiO2@NC-A, respectively. The excellent electron migration ability of the carbon layer accelerated the photocatalytic hydrogen production performance. Our design introduces a component to provide a dedicated charge transport pathway, overcoming the inherent properties of the material and providing a new perspective for enhancing photocatalytic performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.