Abstract
Medulla tetrapanacis is composed of a lignocellulosic biopolymer and has a regular porous structure, which makes it a potential biomass material for preparing porous N-doped biochar. Herewith, N-doped Medulla tetrapanacis biochar (UBC) was successfully prepared by modification with urea and NaHCO3 under pyrolysis at 700 °C. The nitrogen-containing groups were efficiently introduced into biochar, and the micro-pore structures of the UBC were developed with sizeable specific surface area, which was loaded with massive adsorption sites. The adsorption kinetics and isotherms of the UBC conformed to pseudo-second-order and Langmuir model. The superior adsorption capacities of the UBC for methylene blue (MB) and congo red (CR) were 923.0 mg/g and 728.0 mg/g, and the capacities for Cu2+ and Pb2+ were 468.5 mg/g and 1466.5 mg/g, respectively. Moreover, the UBC had a stronger affinity for Cr3+ and Fe3+ in multiple metal ions and retained at a preferable adsorption performance for dyes and heavy metals after five cycles. Precipitation, complexation, and physical adsorption were the main mechanisms of the UBC-adsorbing metal ions and dyes. Thus, lignocellulosic biochar has great potential for removing dyes and heavy metals in aqueous solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.